VisualWorks Optimisation: Tips & Techniques

Bemard Horan and Laura Hill
JP Morgan

Collections

When it is known that a collection is going to become
quite large, create it using new:, supplying a guess at its
final size. (In the case of a dictionary, multiply your guess
by four.) The default new only allocates between 2 and 10
elements (depending on the class), which can cause the
collection to waste a lot of time growing (copying) itself.

Streams and Strings

Use a stream protocol rather than the concatenation opera-
tor to build a large collection from multiple subcollections.
NOT:

Isl

s = String new.

$a asinteger to: $z asinteger do: g:c |
s := §, (String with: ¢ asCharacter))

BUT:
s}
s := (String new: 26) writeStream.
$a asinteger to: $z asinteger do: [:c | s nextPut: ¢

asCharacter].
s contents

Create streams outside of loops and reset rather than creat-
ing them inside loops. If a stream-based message gets hits
a lot, consider retaining the stream as an instance variable
and resetting it rather than creating a new one each time.
This also avoids the problem of deciding a good initial size
for the stream contents since it will grow to the maximum
required by history.

Avoid creating Large, Short-Lived Objects
There is always a tension when iterating over some aspect
of a structure between building a collection of objects for
the projection of that aspect, or building a special-purpose
iterator. Example, in Behavior:

Object selectors do: [:selector | ...}

Object selectorsDo: [:selector | ...]
(The latter does not exist.}

The first of these constructs a Set which is discarded after
the iteration is finished. This may be inefficient (especially
as the selectors are already held as a separate Array). How-
ever, it is probably more flexible and reusable. Unfortu-
nately there is no easy answer here ~ treat each case on its
merits.

Similarly, use keysDo: instead of keys do: and
associationsDo: instead of associations do:. The latter ver-
sions make a copy before doing the enumeration, whereas
the former enumerate over the elements directly.

Avoid Recomputations - General

General principle: avoid repeatedly computing the same
result, but keep the previously computed result. This is a
space-time trade—off. This is especially easy in an object-
oriented language, as you can often hide the cache inside
an object or class, e.g., an instance variable, or a dictionary
held by a class variable.

Often, use an instance variable which i$ either a useful
recently-computed value, or nil. If the variable is nil, com-
pute the value instead and retain in the variable. If the
cached value becomes inappropriate, set the instance vari-
able back to nil.

Examples:
SystemDictionary>>classNames
BorderedWrapper>>insetDisplayBox
CompositePart>>preferredBounds

Browser menu class variables.

Avoid Recomputations - Displays

If a view is composed of only a small number of different
Images, generate them all, once, and retain them using an
instance or class variable. Example: class variables in
LabeledBooleanView.

Remember that the pixels in a Pixmap is stored externally
to the object memory, whereas that in an Image is held by
Smalltalk. This means displaying a Pixmap is likely to be
much faster than an Image (especially if using X on a re-
mote display).

Class Cachedimage is provided to switch between the two
on demand.

General
1) Innested conditionals, put the most likely case first.

2) Don’t use isKindOf.. Besides being slow, it represents
bad object-oriented style.

3) Use self class == aClass instead of self isMemberOf:
aClass. Better still, rewrite your code so you don't
need to know the class of an object.

4) Don't use respondsTo:. Besides being slow, it repre-
sents bad object-oriented style (indicates the sender is
taking responsibility for something that should be
handled by the receiver).

5) Unless you are concemed about numerical accuracy
(e.g., in monetary caliculations), convert Fractions and
FixedPoints to Floats before performing mathematical
operations.

6) Use the following special selectors, which are
optimised by the compiler:

to:do:, ifTruesifFalse:, whileTrue:, and:, or:

7) and: is more efficient than & because it does not
evaluate the argument if the receiver is false. Simi-
larly, or: is more efficient than | because it does not
evaluate the argument if the receiver is true. Both and:
and or: are inlined by the compiler, so that no objects
are created to represent the literal block arguments.
So, unless evaluating the argument has side effects
(which is, perhaps, bad style), use and: and or: instead
of&and |.

NOT:

self sensor biueButtonPressed not & self
viewHasCursor

BUT:

self sensor blueButtonPressed not and: {self
viewHasCursor]

8) I a method requires repeated use of Character cr or
Character space (for example), use the variables de-
fined in pool dictionary TextConstants or its
IOConstants subset to avoid repeated message sends.
To gain access, list the pool dictionary in the class de-
scription.

9) Send self changed: nil with: nil rather than the more

general self changed, which simply builds the same

message for you. Similarly, implement
update:with:from: rather than update:.

If the same message is being sent repeatedly inside a

loop to access a constant, assign it to a temporary

variable outside the loop.

NOT:

quantities inject: 0
into: [:tot :qty | tot + qty * self getPrice)

BUT:
| price |
price := self getPrice.
quantities inject: 0
into: {:lot :qty | tot + qty * price)
Avoid creating Symbols. Avoid sending asSymbol.
Use Symbols as dictionary keys in preference to
Strings.
Sending a message via perform. is up to three times
as slow as a direct message send.
NOT:
selt perform: #messageSend
BUT:

self messageSend

Specialised Objects

Use of specialised subclasses of collection classes can give
dramatic performance improvements.

Example: use of RunArray when Array would be inefficient
(Primarily saves memory, but may improve speed if
memory is tight).

Example: specialised Dictionary subclasses, optimised for
storage space, insertion/removal, or search time.

A useful optimisation is to specialise on the contents of a
collection: (e.g., String is an optimised Array).

Encapsulate Complex Processes in Objects

This is partly a style issue, but can also impact on perfor-
mance.

If you are implementing a complex algorithm, operating
on many objects, with many intermediate states, you
should consider encapsulating and controlling the algo-
rithm within a single object.

This can save much parameter passing and accessing of
shared variables; both can lead to uglier code.

Examples: Compiler, scanners of all sorts.

Use Object Identity

Testing for object identity is very fast: the current compiler
inlines the test, and uses no messages at all (this also
means redefining == is completely ineffective). Hence, use
== (and ~-) rather than = (and ~=) where safe to do so.

Much more effective is the use of identity-based collec-
tions (IdentitySet and IdentityDictionary). When building
new keyed collections, consider providing equality- and
identity-based versions. Alternatively, use objects whose
definition of equality is identity (e.g., Symbols).

Use == instead of = when comparing Symbols, Characters
and Smallintegers

NOT:

x =3 ifTrue: [...]
BUT:

x == 3 ifTrue: [...]

Also, when testing if a variable is nil, use == rather than
isNil.

Blocks

A simple block that makes no references to private vari-
ables other than its own arguments or temporaries, is
called a clean block. A simple block that makes no refer-
ences to private variables other than its own arguments or
temporaries, or self, instance variables, or arguments to
any surrounding blocks or method is called a copying
block.

Clean blocks are bound at compile time, and are the fastest
kind. Copying blocks are slower, but still faster than the
most general kind of simple block (known as dirty blocks)
and continuation blocks. In general, move the declarations
of temporaries to the innermost possible biock.

The special selectors mentioned above are inlined if literal
blocks are used, so no block objects are created, nor are
messages sent to evaluate the blocks, hence for those mes-
sages there is no need to worry about the clean/copying/
dirty distinction.

Clean:

[ii1i sendMessage}
Copying:

[:i 1 selt sendMessage: i}
Dirty:

I temp |
i temp + i sendMessage}
. il

Exceptions and Contexts

The exception-handling mechanism is mostly imple-
mented in Smalltalk itself, with a little primitive support
It works by using the thisContext pseudo-variable to ac-
cess the current context, and thence to access the stack of
Contexts {(MethodContexts and BlockContexts) in the cur-
rent process’s stack.

Hence, whenever an exception is raised, the stack has to
be converted into object form. Thus can take a considerable
amount of time. Hence it is advisable to only use excep-
tons for genuinely exceptional cases. Also, avoid using
thisContext in performance—critical code

Contexts also have to be converted to object form when-
ever a process is suspended (either due to suspend or a
semaphore wait). This puts a minimum overhead on pro-
cess switching.

With thanks to Mario Wolczko and john Nolan

